Tính các giới hạn
LG a
\(\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^3}}}{{3{x^2} - 4}} - \frac{{{x^2}}}{{3x + 2}}} \right)\)
Lời giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^3}}}{{3{x^2} - 4}} - \frac{{{x^2}}}{{3x + 2}}} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^4} + 2{x^3} - 3{x^4} + 4{x^2}}}{{\left( {3{x^2} - 4} \right)\left( {3x + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{x^3} + 4{x^2}}}{{9{x^3} + 6{x^2} - 12x - 8}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^3}\left( {2 + \frac{4}{x}} \right)}}{{{x^3}\left( {9 + \frac{6}{x} - \frac{{12}}{x} - \frac{8}{{{x^3}}}} \right)}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{4}{x}}}{{9 + \frac{6}{x} - \frac{{12}}{x} - \frac{8}{{{x^3}}}}}\\ = \frac{{2 + 0}}{{9 + 0 - 0 - 8}}\\ = \frac{2}{9}\end{array}\)
LG b
\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {9{x^2} + 1} - 3x} \right)\)
Lời giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {9{x^2} + 1} - 3x} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{9{x^2} + 1 - 9{x^2}}}{{\sqrt {9{x^2} + 1} + 3x}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt {9{x^2} + 1} + 3x}}\\ = 0\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {9{x^2} + 1} + 3x} \right) = + \infty \).
LG c
\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {2{x^2} - 3} - 5x} \right)\)
Lời giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {2{x^2} - 3} - 5x} \right)\\ = \mathop {\lim }\limits_{x \to - \infty } \left[ {\sqrt {{x^2}\left( {2 - \frac{3}{{{x^2}}}} \right)} - 5x} \right]\\ = \mathop {\lim }\limits_{x \to - \infty } \left[ {\left| x \right|\sqrt {2 - \frac{3}{{{x^2}}}} - 5x} \right]\\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - x\sqrt {2 - \frac{3}{{{x^2}}}} - 5x} \right]\\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - x\left( {\sqrt {2 - \frac{3}{{{x^2}}}} + 5} \right)} \right]\\ = + \infty \end{array}\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } \left( { - x} \right) = + \infty \) và \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {2 - \frac{3}{{{x^2}}}} + 5} \right) = \sqrt 2 + 5 > 0\).
LG d
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {2{x^2} + 3} }}{{4x + 2}}\)
Lời giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {2{x^2} + 3} }}{{4x + 2}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2}\left( {2 + \frac{3}{{{x^2}}}} \right)} }}{{4x + 2}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left| x \right|\sqrt {2 + \frac{3}{{{x^2}}}} }}{{4x + 2}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {2 + \frac{3}{{{x^2}}}} }}{{x\left( {4 + \frac{2}{x}} \right)}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {2 + \frac{3}{{{x^2}}}} }}{{4 + \frac{2}{x}}}\\ = \frac{{\sqrt 2 }}{4}\end{array}\)
LG e
\(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {2{x^2} + 3} }}{{4x + 2}}\)
Lời giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {2{x^2} + 3} }}{{4x + 2}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2}\left( {2 + \frac{3}{{{x^2}}}} \right)} }}{{4x + 2}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left| x \right|\sqrt {2 + \frac{3}{{{x^2}}}} }}{{4x + 2}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {2 + \frac{3}{{{x^2}}}} }}{{x\left( {4 + \frac{2}{x}} \right)}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {2 + \frac{3}{{{x^2}}}} }}{{4 + \frac{2}{x}}}\\ = - \frac{{\sqrt 2 }}{4}\end{array}\)
SBT tiếng Anh 11 mới tập 2
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Địa lí lớp 11
Chuyên đề 11.2: Một số vấn đề về du lịch thế giới
Chủ đề 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
Chủ đề 9: Một số quyền tự do cơ bản của công dân
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11