Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y=ax^2 (a ≠ 0)
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV. Hàm số y=ax^2 (a khác 0). Phương trình bậc hai một ẩn
Giải vài phương trình của An-Khô-va-ri-zmi (Xem Toán 7, tập 2, tr.26):
LG a
\({x^2} = 12x + 288\)
Phương pháp giải:
Sử dụng công thức nghiệm thu gọn của phương trình bậc hai
Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {\left( {b'} \right)^2} - ac.\)
Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \dfrac{{b'}}{a}\)
Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}}= \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}\)
Để ý rằng nếu hệ số \(b'\) không là số nguyên thì ta nên dùng công thức nghiệm (không thu gọn) để giải phương trình.
Lời giải chi tiết:
\({x^2} = 12x + 288 \Leftrightarrow {x^2} - 12x - 288 = 0\)\(\left( {a = 1;b' = - 6;c = - 288} \right)\)
Suy ra \(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( { - 6} \right)^2} - 1.\left( { - 288} \right) = 324 > 0\)
Nên phương trình có hai nghiệm phân biệt
\({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 6} \right) + \sqrt {324} }}{1} = 24;{x_2} \)\(= \dfrac{{ - b' - \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 6} \right) - \sqrt {324} }}{1} = - 12\)
Hay phương trình có hai nghiệm \(x = 24;x = - 12.\)
LG b
\(\dfrac{1}{{12}}{x^2} + \dfrac{7}{{12}}x = 19\)
Phương pháp giải:
Sử dụng công thức nghiệm thu gọn của phương trình bậc hai
Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {\left( {b'} \right)^2} - ac.\)
Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \dfrac{{b'}}{a}\)
Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}}= \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}\)
Để ý rằng nếu hệ số \(b'\) không là số nguyên thì ta nên dùng công thức nghiệm (không thu gọn) để giải phương trình.
Lời giải chi tiết:
\(\dfrac{1}{{12}}{x^2} + \dfrac{7}{{12}}x = 19\)\( \Leftrightarrow {x^2} + 7x - 228 = 0\)\(\left( {a = 1;b = 7;c = - 228} \right)\)
\(\Delta = {b^2} - 4ac\)\( = {7^2} - 4.1.\left( { - 228} \right) = 961 > 0;\)\(\sqrt \Delta = 31\)
Phương trình có hai nghiệm phân biệt
\({x_1} = \dfrac{{ - b + \sqrt \Delta }}{{2a}} \)\(= \dfrac{{ - 7 + \sqrt {961} }}{2} = 12;\)
\({x_2} = \dfrac{{ - b - \sqrt \Delta }}{{2a}} \)\(= \dfrac{{ - 7 - \sqrt {961} }}{2} = - 19\)
Hay phương trình có hai nghiệm \(x = 12;x = - 19.\)
Bài 8: Năng động, sáng tạo
Bài 28
Đề thi vào 10 môn Toán Hà Nội
Đề thi vào 10 môn Văn Bến Tre
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 9