PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 16 trang 75 SGK Toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) cân tại \(A\), các đường phân giác \(BD, CE\) (\(D ∈ AC, E ∈ AB\)). Chứng minh rằng \(BEDC\) là hình thang cân có đáy nhỏ bằng cạnh bên.

Phương pháp giải - Xem chi tiết

- Hai tam giác bằng nhau có các cạnh tương ứng bằng nhau.

- Tam giác cân có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau.

- Hai đường thẳng song song khi có cặp góc đồng vị bằng nhau. 

- Hình thang là tứ giác có hai cạnh đối song song.

- Hình thang cân là hình thang có hai góc kề với một đáy bằng nhau.

Lời giải chi tiết

 

 

\(\Delta ABC\) cân tại \(A\) (giả thiết)

\( \Rightarrow \left\{ \begin{array}{l}
AB = AC\\
\widehat {ABC} = \widehat {ACB}
\end{array} \right.\)  (tính chất tam giác cân)

Vì \(BD, CE\) lần lượt là phân giác của \(\widehat {ABC}\) và \(\widehat {ACB}\) (giả thiết) 

\( \Rightarrow \left\{ \begin{array}{l}
\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{{\widehat {ABC}}}{2}\\
\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{{\widehat {ACB}}}{2}
\end{array} \right.\) (tính chất tia phân giác)

Mà \(\widehat {ABC} = \widehat {ACB}\) (chứng minh trên)

\( \Rightarrow \widehat {{B_1}} = \widehat {{B_2}} = \widehat {{C_1}} = \widehat {{C_2}}\)

 Xét \(∆ABD\) và  \(∆ACE\) có:

+) \(AB = AC\) (chứng minh trên)

+) \(\widehat{A}\) chung

+) \(\widehat {{B_1}} = \widehat {{C_1}}\) (chứng minh trên)

\( \Rightarrow \Delta ABD = \Delta ACE{\rm{ }}\left( {g.c.g} \right) \)

\(\Rightarrow A{\rm{D}} = A{\rm{E}}\) (\(2\) cạnh tương ứng).

Ta có \(AD =  AE\) (chứng minh trên) nên  \(∆ADE\) cân tại \(A\) (dấu hiệu nhận biết tam giác cân)

\( \Rightarrow \widehat {A{\rm{ED}}} = \widehat {AD{\rm{E}}}\) (tính chất tam giác cân)

Xét \(∆ADE\) có:  \(\widehat {A{\rm{ED}}} + \widehat {AD{\rm{E}}} + \widehat A = {180^0}\) (định lý tổng ba góc trong tam giác)

\(\begin{array}{l}
\Rightarrow 2\widehat {A{\rm{ED}}} + \widehat A = {180^0}\\
\Rightarrow \widehat {A{\rm{ED}}} = \dfrac{{{{180}^0} - \widehat A}}{2}\left( 1 \right)
\end{array}\)

Xét \(∆ABC\) có: \(\widehat A +\widehat {ABC} + \widehat {ACB} = {180^0}\) (định lý tổng ba góc trong tam giác)

Mà \(\widehat {ABC} = \widehat {ACB}\) (chứng minh trên)

\(\begin{array}{l}
\Rightarrow \widehat {2ABC} + \widehat A = {180^0}\\
\Rightarrow \widehat {ABC}= \dfrac{{{{180}^0} - \widehat A}}{2}\left( 2 \right)
\end{array}\)

 

Từ (1) và (2) \(\Rightarrow \widehat{A{\rm{ED}}}\) = \(\widehat{ABC}\), mà hai góc này là hai góc đồng vị nên suy ra \(DE // BC\) (dấu hiệu nhận biết hai đường thẳng song song)

Do đó \(BEDC\) là hình thang (dấu hiệu nhận biết hình thang).

Lại có \(\widehat{ABC}\) = \(\widehat{ACB}\)  (chứng minh trên)

Nên \(BEDC\) là hình thang cân (dấu hiệu nhận biết hình thang cân)

Ta có:

\(DE//BC \Rightarrow \widehat {{D_1}} = \widehat {{B_2}}\) (so le trong)

Lại có \(\widehat{B_{2}}\) = \(\widehat{B_{1}}\) (chứng minh trên) nên \(\widehat{B_{1}}\) = \(\widehat{{D_{1}}}\)

\( \Rightarrow \Delta EB{\rm{D}}\) cân tại \(E\) (dấu hiệu nhận biết tam giác cân)

\( \Rightarrow EB = E{\rm{D}}\) (tính chất tam giác cân).

Vậy \(BEDC\) là hình thang cân có đáy nhỏ bằng cạnh bên.

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved