Bài 16 trang 56 SBT Hình học 12 Nâng cao

Đề bài

Trong số các hình chóp tam giác đều nội tiếp một mặt cầu bán kính R cho trước, hãy xác định hình chóp có thể tích lớn nhất. Mở rộng bài toán cho hình chóp n- giác đều.

Lời giải chi tiết

Dễ thấy \(R = {{S{A^2}} \over {2SH}}\), từ đó nếu kí hiệu cạnh đáy và chiều cao của hình chóp lần lượt là a và h thì

\(\eqalign{  & R = {{{a^2} + 3{h^2}} \over {6h}}\;\;\;\;\;\;\;(1)  \cr  & {V_{S.ABC}} = {1 \over 3}.{{{a^2}\sqrt 3 } \over 4}.h\;\;\;(2) \cr} \)

Từ (1) và (2) ta có:

\(\eqalign{  {V_{S.ABC}} &= {{\sqrt 3 } \over {12}}h\left( {6Rh - 3{h^2}} \right)  \cr  &  = {{\sqrt 3 } \over {12}}h.3h\left( {2R - h} \right)  \cr  &  = {{\sqrt 3 } \over 4}h.h\left( {2R - h} \right). \cr} \)

Mặt khác h < 2R nên \({V_{S.ABC}}\) lớn nhất khi và chỉ khi \(h.h.(2R-h)\) lớn nhất.

Điều này xảy ra khi và chỉ khi \(h = {{4R} \over 3}\). Khi đó

\({a^2} = 3h(2R - h) = 4R(2R - {{4R} \over 3}) = {{8{R^2}} \over 3},\) tức là \(a = {{2R\sqrt 6 } \over 3}.\)

Dễ thấy trong trường hợp này, SABC là tứ diện đều có cạnh bằng \({{2R\sqrt 6 } \over 3}.\)

\( \bullet \) Mở rộng bài toán cho hình chóp n- giác đều cạnh a.

Ta cũng có \(R = {{S{A^2}} \over {2SH}}\), trong đó SA là một cạnh bên và SH là đường cao của hình chóp, từ đó \(R = {{{a^2} + 4{h^2}{{\sin }^2}{\pi  \over n}} \over {8h{{\sin }^2}{\pi  \over n}}},\) suy ra \({a^2} = 4h(2R - h){\sin ^2}{\pi  \over n}\)

Gọi S là diện tích đáy của hình chóp n-giác đều cạnh a thì \(S = {{n{a^2}} \over 4}\cot {\pi  \over n}.\)

Khi ấy, thể tích V của khối chóp bằng

\(\eqalign{   V &= {{n{a^2}} \over {12}}\cot {\pi  \over n}.h  \cr  &  = {n \over {12}}\cot {\pi  \over n}.h.4hsi{n^2}{\pi  \over n}.(2R - h)  \cr  &  = {n \over 3}\cot {\pi  \over n}si{n^2}{\pi  \over n}.h.h(2R - h)  \cr  &  = {n \over 6}\cot {\pi  \over n}si{n^2}{\pi  \over n}.h.h(4R - 2h). \cr} \)

Vậy  lớn nhất khi và chỉ khi \(h = {{4R} \over 3}\) và từ đó

\({a^2} = {\sin ^2}{\pi  \over n}.{{16R} \over 3}(2R - {{4R} \over 3}) = {\sin ^2}{\pi  \over n}.{{32{R^2}} \over 9},\)

Tức là \(a = {{4R\sqrt 2 } \over 3}.\sin {\pi  \over n}.\)

Như thế, trong số các hình chóp n-giác đều nội tiếp một mặt cầu bán kính R cho trước thì hình chóp n-giác đều có chiều cao \(h = {{4R} \over 3}\) và cạnh đáy \(a = {{4R\sqrt 2 } \over 3}\sin {\pi  \over n}\) có thể tích lớn nhất.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved