Bài 16 trang 54 SGK Hình học 12 Nâng cao

Đề bài

Một hình trụ có bán kính đáy bằng \(R\) và chiều cao \(R\sqrt 3 \).

a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.

b) Tính thể tích của khối trụ giới hạn bởi hình trụ.

c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng \({30^0}\). Tính khoảng cách giữa AB và trục của hình trụ.

Lời giải chi tiết

a) Diện tích xung quanh của hình trụ

\({S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}\)

Diện tích toàn phần của hình trụ là:

\({S_{tp}} = {S_{xq}} + 2{S_{day}} = 2\sqrt 3 \pi {R^2} + 2\pi {R^2} \) \(= 2\left( {\sqrt 3  + 1} \right)\pi {R^2}\)
b) Thể tích của khối trụ \(V = \pi {R^2}.R\sqrt 3  = \sqrt 3 \pi {R^3}\).

c) Gọi \(O\) và \(O’\) là tâm của hai đường tròn đáy.

Kẻ \(AA’ // OO’\) (A’ nằm trên đáy dưới hình trụ)

Ta có: \(O'A' = R\,\,,\,\,AA' = R\sqrt 3 \) và \(\widehat {BAA'} = {30^0}\).

Vì \(OO’ // (ABA’)\) nên khoảng cách giữa \(OO’\) và \(AB\) bằng khoảng cách giữa \(OO’\) và \((ABA’)\).

Kẻ \(OH \bot A'B\) thì \(H\) là trung điểm của \(A’B\) (quan hệ vuông góc giữa đường kính và dây cung) và \(O'H \bot \left( {ABA'} \right)\).

Trong tam giác vuông \(AA’B\) ta có:

\(\tan {30^0} = {{A'B} \over {AA'}} \)

\(\Rightarrow A'B = AA'.\tan{30^0} \) \(= R\sqrt 3 .{1 \over {\sqrt 3 }} = R\)

Vậy tam giác \(BA’O’\) là tam giác đều cạnh \(R\) nên \(O'H = {{R\sqrt 3 } \over 2}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved