Bài 16 trang 226 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2
LG 3
LG 4
LG 5
LG 6

Trong không gian Oxyz cho hai điểm A(3 ; 3 ; 1), B(0 ; 2 ; 1) và mặt phẳng \(\left( P \right):x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}z - {\rm{ }}1{\rm{ }} = {\rm{ }}0.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2
LG 3
LG 4
LG 5
LG 6

LG 1

Viết phương trình đựờng thẳng AB.

Lời giải chi tiết:

Đường thẳng d1 đi qua điểm M1(0;2;-4) và có vec tơ chỉ phương \(\overrightarrow {{u_1}}  = (1; - 1;2).\) thẳng d2 đi qua điểm M1(-8;6;10) và có vec tơ chỉ phương \(\overrightarrow {{u_2}}  = (2;1; - 1).\)

Ta có \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 1;5;3),\overrightarrow {{M_1}{M_2}}  = ( - 8;4;14) \)

\(\Rightarrow \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}}  = 70 \ne 0\)

\( \Rightarrow {d_1},{d_2}\) chéo nhau.

LG 2

Viết phương trình hình chiếu vuông góc của AB trên mp(P).

Lời giải chi tiết:

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa d2 và song song với d1. Khi đó \(mp(\alpha )\) qua điểm \({M_2}( - 8;6;10)\) và có vec tơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 1;5;3)\)

\( \Rightarrow \left( \alpha  \right):x - 5y - 3z + 68 = 0.\)

LG 3

Viết phương trình đường thẳng d nằm trong mp(P) mà mọi điểm của cách đều hai điểm A, B.

Lời giải chi tiết:

\(d\left( {{d_1},{d_2}} \right) = d({M_1},\left( \alpha  \right) \)

                      \(= {{\left| {0 - 10 + 12 + 68} \right|} \over {\sqrt {1 + 25 + 9} }} = {{70} \over {\sqrt {35} }} = 2\sqrt {35} .\)

LG 4

Viết phương trình đường vuông góc chung của AB và d.

Lời giải chi tiết:

Viết lại phương trình đường thẳng \({d_1},{d_2}\) dưới dạng tham số. Từ đó :

\(M \in {d_1}\) nên M=(t;2-t;-4+2t)

\(N \in {d_2}\) nên N=(-8+2t’;6+t’;10-t’)

\( \Rightarrow \overrightarrow {MN}  = ( - 8 + 2t' - t;4 + t' + t;14 - t' - 2t).\)

Đường thẳng MN sẽ là đường thẳng d phải tìm khi \(MN\parallel Ox\) hay hai vec tơ \(\overrightarrow {MN} \)và \(\overrightarrow i (1;0;0)\) cùng phương, nghĩa là

\(\left\{ \matrix{  t' + t =  - 4 \hfill \cr  t' + 2t = 14 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  t = 18 \hfill \cr  t' =  - 22. \hfill \cr}  \right.\)

Vậy M=(18;-16;32) và đường thẳng d phải tìm có phương trình tham số :

\(d:\left\{ \matrix{  x = 18 + t \hfill \cr  y =  - 16 \hfill \cr  z = 32. \hfill \cr}  \right.\)

LG 5

Tìm điểm K thuộc đường thẳng AB \(\left( {K \ne B} \right)\) sao cho

                            \(d\left( {K,\left( P \right)} \right){\rm{ }} = {\rm{ }}d\left( {B,\left( P \right)} \right).\)

Lời giải chi tiết:

\(\eqalign{  & A \in {d_1} \Rightarrow A = (t;2 - t; - 4 + 2t),  \cr  & B \in {d_2} \Rightarrow B = ( - 8 + 2t';6 + t';10 - t'),  \cr  &  \Rightarrow \overrightarrow {AB}  = ( - 8 + 2t' - t;4 + t' + t;14 - t' - 2t).  \cr  & \overrightarrow {AB}  \bot \overrightarrow {{u_1}}  \Leftrightarrow 6t + t' = 16,  \cr  & \overrightarrow {AB}  \bot \overrightarrow {{u_2}}  \Leftrightarrow t + 6t' = 26. \cr} \)

Giải hệ \(\left\{ \matrix{  6t + t' = 16 \hfill \cr  t + 6t' = 26 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  t = 2 \hfill \cr  t' = 4 \hfill \cr}  \right. \)

\(\Rightarrow  A = (2;0;0) ; B = (0;10;6). \)

Suy ra mặt cầu đườn kính AB có tâm I=(1;5;3), bán kính bằng \(\sqrt {35} \). Phương trình của nó là :

\({\left( {x - 1} \right)^2} + {\left( {y - 5} \right)^2} + {\left( {z - 3} \right)^2} = 35.\)

LG 6

Tìm điểm C trên đường thẳng d sao cho diện tích tam giác ABC nhỏ nhất.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved