Đề bài
Cho hai đường tròn đồng tâm (O; R), (O; R’) với (R > R’), dây AB và CD của đường tròn (O; R) cắt đường tròn (O; R’) lần lượt tại A’, B’ và C’, D’. Chứng minh rằng nếu hai cung AB, CD bằng nhau thì hai cung A’B’, C’D’ cũng bằng nhau.
Phương pháp giải - Xem chi tiết
+) Gọi E, E lần lượt là trung điểm của AB và CD. Chứng minh E, F lần lượt là trung điểm của A’B’ và C’D’.
+) Sử dụng định lí: Hai dây bằng nhau thì cách đều tâm và ngược lại.
Lời giải chi tiết
Gọi E, F lần lượt là trung điểm của AB và CD \( \Rightarrow OE \bot AB;\,\,OF \bot CD\) (quan hệ vuông góc giữa đường kính và dây cung).
\( \Rightarrow OE \bot A'B';\,\,OF \bot C'D'\).
\( \Rightarrow E;F\) lần lượt là trung điểm của A’B’ và C’D’.
Xét đường tròn \(\left( O \right)\) có: \(AB = CD \Rightarrow OE = OF\) (hai dây bằng nhau thì cách đều tâm).
Xét đường tròn tâm \(\left( {O'} \right)\) có \(OE = OF \Rightarrow A'B' = C'D'\) (hai dây cách đều tâm thì bằng nhau).
Đề thi vào 10 môn Anh Hà Nội
Bài 7. Các nhân tố ảnh hưởng đến sự phát triển và phân bố nông nghiệp
CHƯƠNG II. ĐIỆN TỪ HỌC
Bài 14
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 9