1. Nội dung câu hỏi
a) \(A = \sqrt[3]{{5\sqrt {\frac{1}{5}} }};\,\,a = 5\)
b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}};\,\,a = \sqrt 2 \)
2. Phương pháp giải
Dựa vào tính chất lũy thừa để tính.
3. Lời giải chi tiết
a) \(A = \sqrt[3]{{5\sqrt {\frac{1}{5}} }} = \sqrt[3]{{a\sqrt {\frac{1}{a}} }} = \sqrt[3]{{a.{a^{\frac{1}{2}}}}} = \sqrt[3]{{{a^{\frac{3}{2}}}}} = {\left( {{a^{\frac{3}{2}}}} \right)^{\frac{1}{3}}} = {a^{\frac{3}{2}.\frac{1}{3}}} = {a^{\frac{1}{2}}} = \sqrt a \).
b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}} = \frac{{{2^2}{{.2}^{\frac{1}{5}}}}}{{{4^{\frac{1}{3}}}}} = \frac{{{2^{\frac{{11}}{5}}}}}{{{2^{\frac{2}{3}}}}} = {2^{\frac{{23}}{{15}}}}\)
\(a = \sqrt 2 = {2^{\frac{1}{2}}}\)
=> \(B = {a^{\frac{{23}}{{30}}}}\).
ĐỀ THI HỌC KÌ 1 - ĐỊA LÍ 11
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Chủ đề 2. Làm chủ cảm xúc và các mối quan hệ
Bài 3. Một số vấn đề mang tính chất toàn cầu - Tập bản đồ Địa lí 11
Chương 4. Sinh sản ở sinh vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11