PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 15 trang 56 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) rồi dùng công thức nghiệm thu gọn để tìm giá trị gần đúng (làm tròn kết quả đến hai chữ số thập phân) nghiệm của phương trình:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\(3{x^2} - 2x = {x^2} + 3\) 

Phương pháp giải:

Chuyển vế đưa phương trình về dạng \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) rồi sử dụng công thức nghiệm thu gọn để giải các phương trình.

Lời giải chi tiết:

\(3{x^2} - 2x = {x^2} + 3 \)\(\Leftrightarrow 2{x^2} - 2x - 3 = 0\)

 \(a = 2;b' =  - 1;c =  - 3\); \(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( { - 1} \right)^2} - 2.\left( { - 3} \right) = 7 > 0\)  

Phương trình có hai nghiệm phân biệt

\({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 1} \right) + \sqrt 7 }}{2} \approx 1,82;\\{x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 1} \right) - \sqrt 7 }}{2} \approx 0,82\)

LG b

\({\left( {2x - \sqrt 2 } \right)^2} - 1 = \left( {x + 1} \right)\left( {x - 1} \right)\)

Phương pháp giải:

Chuyển vế đưa phương trình về dạng \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) rồi sử dụng công thức nghiệm thu gọn để giải các phương trình.

Lời giải chi tiết:

\({\left( {2x - \sqrt 2 } \right)^2} - 1 = \left( {x + 1} \right)\left( {x - 1} \right)\)\( \Leftrightarrow 4{x^2} - 4\sqrt 2 x + 2 - 1 = {x^2} - 1 \)\(\Leftrightarrow 3{x^2} - 4\sqrt 2 x + 2 = 0\)

\(a = 3;b' =  - 2\sqrt 2 ;c = 2\); \(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( {2\sqrt 2 } \right)^2} - 3.2 = 2 > 0\)

Phương trình có hai nghiệm phân biệt

\({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 2\sqrt 2 } \right) + \sqrt 2 }}{3} \approx 1,41;\)

\({x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\)\( = \dfrac{{ - \left( { - 2\sqrt 2 } \right) - \sqrt 2 }}{3} \approx 0,47\)

LG c

\(3{x^2} + 3 = 2\left( {x + 1} \right)\) 

Phương pháp giải:

Chuyển vế đưa phương trình về dạng \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) rồi sử dụng công thức nghiệm thu gọn để giải các phương trình.

Lời giải chi tiết:

\(3{x^2} + 3 = 2\left( {x + 1} \right)\)\( \Leftrightarrow 3{x^2} + 3 = 2x + 2\)\( \Leftrightarrow 3{x^2} - 2x + 1 = 0\)

\(a = 3;b' =  - 1;c = 1\);  \(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( { - 1} \right)^2} - 3.1 \)\(=  - 2 < 0\)

Phương trình vô nghiệm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved