Bài 15 trang 56 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

Trong số các hình hộp nội tiếp một mặt cầu bán kính R cho trước, tìm hình hộp thỏa mãn một trong các tính chất sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

LG 1

Thể tích hình hộp đạt giá trị lớn nhất

Lời giải chi tiết:

Trước hết, ta nhận xét rằng hình hộp nội tiếp mặt cầu phải là hình hộp chữ nhật.

Từ đó, nếu kí hiệu ba kích thước của hình hộp đó là x, y, z thì \({x^2} + {y^2} + {z^2} = 4{R^2}\)

Thể tích khối hộp chữ nhật là V = xyz, từ đó  \({V^2} = {x^2}{y^2}{z^2}.\)

Vậy V đạt giá trị lớn nhất khi và chỉ khi \({x^2} = {y^2} = {z^2} = {{4{R^2}} \over 3}\) hay \(x = y = z = {{2R} \over {\sqrt 3 }},\) tức hình hộp đó là hình lập phương với cạnh bằng \({{2R} \over {\sqrt 3 }}\)

LG 2

Tổng độ dài các cạnh của hình hộp đạt giá trị lớn nhất.

Lời giải chi tiết:

Tổng độ dài các cạnh của hình hộp là T=4(x+y+z), từ đó

\({T^2} = 16{(x + y + z)^2} \)

\(\le 16.3({x^2} + {y^2} + {z^2}) \)

\(= 192{R^2}\)

Như vậy, tổng độ dài các cạnh của hình hộp đạt giá trị lớn nhất khi và chỉ khi \(x = y = z = {{2R} \over {\sqrt 3 }}\) hay hình hộp đó là hình lập phương có cạnh bằng \({{2R} \over {\sqrt 3 }}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved