GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 15 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Trong mặt phẳng phức, cho ba điểm \(A, B, C\) không thẳng hàng theo thứ tự biểu diễn các số phức \({z_1},{z_2},{z_3}\). Hỏi trọng tâm của tam giác \(ABC\) biểu diễn số phức nào?

Phương pháp giải:

Tìm tọa độ trọng tâm tam giác, từ đó suy ra số phức cần tìm.

Lời giải chi tiết:

Giả sử z1=a1+b1 i => A(a1;b1)

z2=a2+b2 i=>B(a2;b2)

z3=a3+b3 i=>C(a3;b3)

Suy ra trọng tâm G của tam giác ABC có tọa độ \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{a_1} + {a_2} + {a_3}}}{3}\\{y_G} = \dfrac{{{b_1} + {b_2} + {b_3}}}{3}\end{array} \right.\)

Lại có \(\dfrac{1}{3}\left( {{z_1} + {z_2} + {z_3}} \right)\) \( = \dfrac{1}{3}\left( {{a_1} + {b_1}i + {a_2} + {b_2}i + {a_3} + {b_3}i} \right)\) \( = \dfrac{1}{3}\left[ {\left( {{a_1} + {a_2} + {a_3}} \right) + \left( {{b_1} + {b_2} + {b_3}} \right)i} \right]\)

\( = \dfrac{{{a_1} + {a_2} + {a_3}}}{3} + \dfrac{{{b_1} + {b_2} + {b_3}}}{3}i\)

Do đó điểm \(G\) biểu diễn số phức \(\dfrac{1}{3}\left( {{z_1} + {z_2} + {z_3}} \right)\)

Cách khác:

Trong mặt phẳng phức gốc \(O, G\) là trọng tâm của tam giác \(ABC\) khi và chỉ khi

\(\overrightarrow {OG}  = {1 \over 3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\).

Vậy \(G\) biểu diễn số phức \({1 \over 3}\left( {{z_1} + {z_2} + {z_3}} \right)\) vì \(\overrightarrow {OA} \), \(\overrightarrow {OB} \),\(\overrightarrow {OC} \) theo thứ tự biểu diễn \({z_1},{z_2},{z_3}\).

LG b

Xét ba điểm \(A, B, C\) của mặt phẳng phức theo thứ tự biểu diễn ba số phức phân biệt \({z_1},{z_2},{z_3}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\).

Chứng minh rằng \(A, B, C\) là ba đỉnh của một tam giác đều khi và chỉ khi \({z_1} + {z_2} + {z_3} = 0\)

Phương pháp giải:

Tam giác đều có tâm đường tròn ngoại tiếp tam giác trùng với trọng tâm.

Lời giải chi tiết:

\(\begin{array}{l}
\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\\
\Leftrightarrow \sqrt {a_1^2 + b_1^2} = \sqrt {a_2^2 + b_2^2} = \sqrt {a_3^2 + b_3^2} \\
\Leftrightarrow OA = OB = OC
\end{array}\)

Do đó O là tâm đường tròn ngoại tiếp tam giác.

Tam giác \(ABC\) là tam giác đều khi và chỉ khi trọng tâm \(G\) của nó trùng với tâm đường tròn ngoại tiếp, tức là \(G \equiv O\) hay:

\(\left\{ \begin{array}{l}
\frac{{{a_1} + {a_2} + {a_3}}}{3} = 0\\
\frac{{{b_1} + {b_2} + {b_3}}}{3} = 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
{a_1} + {a_2} + {a_3} = 0\\
{b_1} + {b_2} + {b_3} = 0
\end{array} \right. \) \(\Leftrightarrow  {z_1} + {z_2} + {z_3} = 0\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved