PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 14 trang 15 sgk Toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Giải các hệ phương trình bằng phương pháp thế:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

\(\left\{\begin{matrix} x + y\sqrt{5} = 0& & \\ x\sqrt{5} + 3y = 1 - \sqrt{5}& & \end{matrix}\right.\)

Phương pháp giải:

Rút \(x\) từ phương trình thứ nhất \(x + y\sqrt 5  = 0\) rồi thế vào phương trình thứ hai ta được phương trình ẩn \(y.\)  Giải phương trình này ta tìm được \(y,\) từ đó suy ra \(x.\)

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
x + y\sqrt 5 = 0 \hfill \cr 
x\sqrt 5 + 3y = 1 - \sqrt 5 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
\left( { - y\sqrt 5 } \right).\sqrt 5 + 3y = 1 - \sqrt 5 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
- 5y + 3y = 1 - \sqrt 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
- 2y = 1 - \sqrt 5 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
y = \dfrac{1 - \sqrt 5 }{ - 2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
y = \dfrac{\sqrt 5 - 1}{2} \hfill \cr} \right.\) 

\(\Leftrightarrow \left\{ \matrix{
x = - \dfrac{\sqrt 5 - 1}{ 2}.\sqrt 5 \hfill \cr 
y = \dfrac{\sqrt 5 - 1}{2} \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = - \dfrac{5 - \sqrt 5 }{2} \hfill \cr 
y = \dfrac{\sqrt 5 - 1}{2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \dfrac{\sqrt 5 - 5}{ 2} \hfill \cr 
y = \dfrac{\sqrt 5 - 1}{ 2} \hfill \cr} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \( {\left(\dfrac{\sqrt 5 - 5}{ 2} ; \dfrac{\sqrt 5 - 1}{ 2} \right)}\)

LG b

LG b

\(\left\{\begin{matrix} (2 - \sqrt{3})x - 3y = 2 + 5\sqrt{3}& & \\ 4x + y = 4 -2\sqrt{3}& & \end{matrix}\right.\)

Phương pháp giải:

Rút \(y\) từ phương trình thứ hai \(4x + y = 4 - 2\sqrt 3 \) rồi thế vào phương trình thứ nhất ta được phương trình ẩn \(x.\) Giải phương trình này ta tìm được \(x,\) từ đó suy ra \(y.\)

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
\left( {2 - \sqrt 3 } \right)x - 3y = 2 + 5\sqrt 3 \hfill \cr 
4x + y = 4 - 2\sqrt 3 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
\left( {2 - \sqrt 3 } \right)x - 3\left( {4 - 2\sqrt 3 - 4x} \right) = 2 + 5\sqrt 3  \      (1) \hfill \cr 
y = 4 - 2\sqrt 3 - 4x \     (2) \hfill \cr} \right.\)

Giải phương trình \((1)\), ta được:

\(( 2 - \sqrt 3 )x - 3(4 - 2\sqrt 3 - 4x) = 2 + 5\sqrt 3\)

\(\Leftrightarrow 2x -\sqrt 3 x -12 + 6 \sqrt 3 + 12x=2+ 5 \sqrt 3\)

\(\Leftrightarrow 2x -\sqrt 3 x + 12x=2+ 5 \sqrt 3 +12 -6 \sqrt 3 \)

\(\Leftrightarrow (2 -\sqrt 3  + 12)x= 2+12 +5\sqrt 3 -6 \sqrt 3 \)

\(\Leftrightarrow (14- \sqrt 3)x=14-\sqrt 3\)

\(\Leftrightarrow x=1\)

Thay \(x=1\), vào \((2)\), ta được:

\(y = 4 - 2\sqrt 3 - 4.1=-2 \sqrt 3.\)

Vậy hệ phương trình có nghiệm duy nhất \((1; -2 \sqrt 3).\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved