Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Tìm toạ độ tâm và tính bán kính của mỗi mặt cầu sau đây :
LG a
\({x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\)
Phương pháp giải:
Biến đổi phương trình về dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) suy ra tâm I(a;b;c) bán kính R.
Hoặc mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có tâm I(a;b;c) bán kính R=\(\sqrt {{a^2} + {b^2} + {c^2} - d} \)
Lời giải chi tiết:
Ta có
\(\eqalign{
& {x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0 \cr
& \Leftrightarrow \left( {{x^2} - 8x + 16} \right) + \left( {{y^2} + 2y + 1} \right) + {z^2} = 16 \cr
& \Leftrightarrow {\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 16 \cr} \)
Mặt cầu có tâm \(I\left( {4; - 1;0} \right)\) và có bán kính R = 4.
Cách khác:
Ta có: a=4,b=-1,c=0,d=1 và \(R = \sqrt {16 + 1 + 0 - 1} = 4\).
Vậy tâm \(I\left( {4; - 1;0} \right)\) và có bán kính R = 4.
LG b
\(3{x^2} + 3{y^2} + 3{z^2} + 6x - 3y + 15z - 2 = 0\)
Lời giải chi tiết:
Ta có
\(\eqalign{
& 3{x^2} + 3{y^2} + 3{z^2} + 6x - 3y + 15z - 2 = 0 \cr
& \Leftrightarrow {x^2} + {y^2} + {z^2} + 2x - y + 5z - {2 \over 3} = 0 \cr
& \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - {1 \over 2}} \right)^2} + {\left( {z + {5 \over 2}} \right)^2} = {{49} \over 6} \cr} \)
Mặt cầu có tâm \(I\left( { - 1;{1 \over 2}; - {5 \over 2}} \right)\) và có bán kính \(R = {{7\sqrt 6 } \over 6}\).
Cách khác:
Ta có: a=-1,b=1/2,c=-5/2,d=-2/3 và \(R = \sqrt {1 + \frac{1}{4} + \frac{{25}}{4} + \frac{2}{3}} = \frac{{7\sqrt 6 }}{6}\).
Vậy tâm \(I\left( { - 1;{1 \over 2}; - {5 \over 2}} \right)\) và có bán kính \(R = {{7\sqrt 6 } \over 6}\).
LG c
\(9{x^2} + 9{y^2} + 9{z^2} - 6x + 18y + 1 = 0\)
Lời giải chi tiết:
\(\eqalign{
& 9{x^2} + 9{y^2} + 9{z^2} - 6x + 18y + 1 = 0 \cr
& \Leftrightarrow {x^2} + {y^2} + {z^2} - {2 \over 3}x + 2y + {1 \over 9} = 0 \cr
& \Leftrightarrow {\left( {x - {1 \over 3}} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1 \cr} \)
Mặt cầu có tâm \(I\left( {{1 \over 3}; - 1;0} \right)\) và có bán kính R = 1.
Cách khác:
Ta có: a=1/3,b=-1,c=0,d=1/9 và \(R = \sqrt { \frac{1}{9} +1+0- \frac{{1}}{9}} =1\).
Vậy tâm \(I\left( {{1 \over 3}; - 1;0} \right)\) và có bán kính R = 1.
PHẦN HAI. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000
Bài 13. Thực hành: đọc bản đồ địa hình, điền vào lược đồ trống một số dãy núi và đỉnh núi
Unit 16 : The Associantion Of Southeast Asian Nations - Hiệp Hội Các Quốc Gia Đông Nam Á
Tải 50 đề thi học kì 1 mới nhất có lời giải
Chương 1. Dao động cơ