Bài 13 trang 56 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

Cho mặt cầu tâm O bán kính R và A là điểm cố định thuộc mặt cầu. Ba tia \(A{t_1},A{t_2},A{t_3}\) thay đổi, đôi một vuông góc với nhau và cắt mặt cầu tại các điểm B, C, D.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

LG 1

Chứng minh rằng hình hộp dựng trên ba cạnh AB, AC, AD có một đường chéo cố định và mp(BCD) luôn luôn đi qua một điểm cố định.

Lời giải chi tiết:

Dễ thấy các đỉnh của hình hộp chữ nhật dựng trên ba cạnh AB, AC, AD cũng thuộc mặt cầu đã cho.

Khi ấy tâm O của mặt cầu là trung điểm của đường chéo AA’ của hình hộp, tức là hình hộp nêu trên có một đường chéo cố định là AA’.

Mặt khác AA’ cắt mp(BCD) tại trọng tâm G của tam giác BCD và \(\overrightarrow {AG}  = {1 \over 3}\overrightarrow {AA'} \).

Vậy mp(BCD) luôn luôn đi qua điểm cố định G nói trên.

LG 2

Chứng minh rằng hình chiếu H của điểm D trên đường thẳng BC thuộc một mặt cầu cố định.

Lời giải chi tiết:

Vì \(DH \bot BC,DA \bot mp(ABC)\) nên \(AH \bot BC\).

Gọi O1 là trung điểm của BC thì \({\rm{O}}{{\rm{O}}_1} \bot (BCA) \Rightarrow O{O_1} \bot AH,\) từ đó \(AH \bot HO.\)

Điều này khẳng định điểm H thuộc mặt cầu đường kính AO, mặt cầu này cố định vì A, O cố định.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved