Bài 1. Mở đầu về phương trình
Bài 2. Phương trình bậc nhất một ẩn và cách giải
Bài 3. Phương trình đưa được về dạng ax + b = 0
Bài 4. Phương trình tích
Bài 5. Phương trình chứa ẩn ở mẫu
Bài 6. Giải bài toán bằng cách lập phương trình
Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
Ôn tập chương III. Phương trình bậc nhất một ẩn
Đề bài
Giải các phương trình:
a) \(3x - 2 = 2x - 3\);
b) \(3 - 4u + 24 + 6u = u + 27 + 3u\);
c) \(5 - (x - 6) = 4(3 - 2x)\);
d) \(-6(1,5 - 2x) = 3(-15 + 2x)\);
e) \(0,1 - 2(0,5t - 0,1) = 2(t - 2,5) \)\(\,- 0,7\);
f) \( \dfrac{3}{2}(x -\dfrac{5}{4})-\dfrac{5}{8} = x\)
Phương pháp giải - Xem chi tiết
a+b) Thực hiện quy tắc chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
c+d+e) Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
f) Thực hiện các bước sau:
+ Quy đồng mẫu hai vế và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
Lời giải chi tiết
a) \(3x - 2 = 2x - 3\)
\(⇔ 3x - 2x = -3 + 2\)
\(⇔ x = -1\)
Vậy phương trình có nghiệm duy nhất \(x = -1.\)
b) \(3 - 4u + 24 + 6u = u + 27 + 3u\)
\(⇔ 2u + 27 = 4u + 27\)
\(⇔ 2u - 4u = 27 - 27\)
\(⇔ -2u = 0\)
\(⇔ u = 0\)
Vậy phương trình có nghiệm duy nhất \(u = 0.\)
c) \(5 - (x - 6) = 4(3 - 2x)\)
\(⇔ 5 - x + 6 = 12 - 8x\)
\(⇔ -x + 11 = 12 - 8x\)
\(⇔ -x + 8x = 12 - 11\)
\(⇔ 7x = 1\)
\(⇔ x = \dfrac{1}{7}\)
Vậy phương trình có nghiệm duy nhất \(x = \dfrac{1}{7}\).
d) \(-6(1,5 - 2x) = 3(-15 + 2x)\)
\(⇔ -9 + 12x = -45 + 6x\)
\(⇔ 12x - 6x = -45 + 9\)
\(⇔ 6x = -36\)
\(⇔ x = -36:6\)
\(⇔ x = -6\)
Vậy phương trình có nghiệm duy nhất \(x = -6\).
e) \(0,1 - 2(0,5t - 0,1) = 2(t - 2,5)\)\(\, - 0,7\)
\(⇔ 0,1 - t + 0,2 = 2t - 5 - 0,7\)
\(⇔ -t + 0,3 = 2t - 5,7\)
\(⇔ -t - 2t = -5,7 - 0,3\)
\(⇔ -3t = -6\)
\(⇔ t = (-6):(-3)\)
\(⇔ t = 2\)
Vậy phương trình có nghiệm duy nhất \(t = 2\)
f) \( \dfrac{3}{2}(x -\dfrac{5}{4})-\dfrac{5}{8} = x\)
\(⇔ \dfrac{3}{2}x - \dfrac{15}{8} - \dfrac{5}{8} = x\)
\(⇔ \dfrac{3}{2}x -x=\dfrac{15}{8}+\dfrac{5}{8}\)
\(⇔ \dfrac{1}{2}x = \dfrac{20}{8}\)
\(⇔ x = \dfrac{20}{8} : \dfrac{1}{2}\)
\(⇔ x = 5\)
Vậy phương trình có nghiệm duy nhất \(x = 5\).
Bài 8: Lập kế hoạch chi tiêu
Unit 4: Our Past - Quá khứ của chúng ta
SBT Toán 8 - Cánh Diều tập 1
Bài 15. Đặc điểm dân cư, xã hội Đông Nam Á
Bài 4: Giữ chữ tín
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8