Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Nếu tìm thấy hai nghiệm phân biệt của một hệ hai phương trình bậc nhất hai ẩn (nghĩa là hai nghiệm được biểu diễn bởi hai điểm phân biệt) thì ta có thể nói gì về số nghiệm của hệ phương trình đó ? Vì sao ?
Phương pháp giải - Xem chi tiết
Sử dụng tính chất: Qua hai điểm phân biệt vẽ được một và chỉ một đường thẳng.
Lời giải chi tiết
Giả sử hệ hai phương trình bậc nhất hai ẩn: \(\left\{\begin{matrix} ax +by = c \ (d) & & \\ a'x + b'y = c' \ (d') & & \end{matrix}\right.\)
có hai nghiệm phân biệt. Khi đó \((d)\) và \((d')\) giao nhau tại hai điểm phân biệt \(A\) và \(B\).
Do đó \(A,\ B\) nằm trên đường thẳng \(d\).
Cũng có \(A,\ B\) cùng nằm trên đường thẳng \(d'\).
Vì qua hai điểm phân biệt ta luôn vẽ được một và chỉ một đường thẳng nên \(d\) và \(d'\) trùng nhau. Tức là hệ trên có vô số nghiệm.
Đề thi vào 10 môn Toán Bình Định
Bài 13: Quyền tự do kinh doanh và nghĩa vụ đóng thuế
Bài 19. Thực hành: Đọc bản đồ, phân tích và đánh giá ảnh hưởng của tài nguyên khoáng sản đối với phát triển công nghiệp ở Trung du và miền núi Bắc Bộ
Đề thi giữa học kì - Hóa học 9
Đề thi học kì 1 - Sinh 9