PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 10.2 phần bài tập bổ sung trang 113 SBT toán 9 tập 2

Đề bài

Tính diện tích của hình cánh hoa, biết \(OA = R (h.bs.8).\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong đường tròn \(R,\) độ dài \(l\) của một cung \(n^\circ\) được tính theo công thức: \(l=\dfrac{\pi Rn}{180}.\)

+) Diện tích hình quạt tròn bán kính \(R,\) cung \(n^\circ\) được tính theo công thức: \(S=\dfrac{\pi R^2n}{360}\) hay \(S=\dfrac{lR}{2}\)

Lời giải chi tiết

 

Ta có \(12\) hình viên phân có diện tích bằng nhau tạo nên cánh hoa đó.

Xét hình viên phân giới hạn bởi cung \(\overparen{BO}\) và dây căng cung đó thì cung \(\overparen{BO}\) là cung của đường tròn tâm \(A\) bán kính \(R.\)

\(OA = AB = OB = R\)

\( \Rightarrow \Delta AOB\) đều \( \Rightarrow \widehat {OAB} = {60^0}\)

Diện tích hình quạt \(AOB\) là:

\(S'=\displaystyle {{\pi {R^2}.60} \over {360}} = {{\pi {R^2}} \over 6}\)

Kẻ \(AI \bot BO\) tại I.

Trong tam giác vuông \(AIO\) ta có: 

\(AI = AO. \sin\widehat {AOI} \)\(= R.\sin {60^0} = \displaystyle {{R\sqrt 3 } \over 2}\)

\(S_{\Delta AOB}=\displaystyle {1 \over 2}AI.AB \)\(= \displaystyle {1 \over 2}.{{R\sqrt 3 } \over 2}.R = {{{R^2}\sqrt 3 } \over 4}\)

Diện tích \(1\) hình viên phân là:

\(S_1=S'-S_{\Delta AOB}\)

 \(=\displaystyle {{\pi {R^2}} \over 6} - {{{R^2}\sqrt 3 } \over 4} = {{2\pi {R^2} - 3{R^2}\sqrt 3 } \over {12}}\)

Diện tích của hình cánh hoa:

\(S = 12. S_1 = 12.\displaystyle {{2\pi {R^2} - 3\displaystyle {R^2}\sqrt 3 } \over {12}}\)\( = {R^2}\left( {2\pi  - 3\sqrt 3 } \right)\) (đơn vị diện tích)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved