CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

Bài 10 trang 74 Tài liệu dạy – học Toán 9 tập 1

Đề bài

Cho đoạn thẳng AB = 2a. Từ trung điểm O của AB vẽ Ox vuông góc với AB. Trên Ox lấy điểm D sao cho \(OD = \dfrac{a}{2}\). Từ B vẽ BC vuông góc với AD kéo dài.

a) Tính AD, AC và BC theo a.

b) Kéo dài DO một đoạn OE = a. Chứng minh bốn điểm A, C, B, E cùng nằm trên một đường tròn.

c) Vẽ đường vuông góc với BC tại B cắt CE tại F. Tính BF.

d) Gọi P là giao điểm của AB và CE. Tính AP và BP.

Phương pháp giải - Xem chi tiết

a) Áp dụng định lý Pythagore và sử dụng tỉ số đồng dạng để tính.

b) Chứng minh bốn điểm A, C, B, E cùng cách đều một điểm

c) Tính góc FCB từ đó dựa vào tam giác BCF vuông tại B để tính BF

d) Tìm tổng và tỉ số của AP và BP dựa vào tam giác đồng dạng.

Lời giải chi tiết

 

a) Tính AD, AC và BC theo a.

Ta có O là trung điểm của AB \( \Rightarrow \) OA = OB = \(\dfrac{1}{2}\)AB = a

Áp dụng định lý Pythagore vào tam giác ADO vuông tại O:

\(A{D^2} = O{A^2} + O{D^2}\)\(\, = {a^2} + {\left( {\dfrac{a}{2}} \right)^2} = \dfrac{{5{a^2}}}{4} \)

\(\Rightarrow AD = \dfrac{{a\sqrt 5 }}{2}\)

Xét tam giác ADO và tam giác ABC có:

+) \(\widehat A\) chung;

+) \(\widehat {AOD} = \widehat {ACB} = {90^o}\)

\( \Rightarrow \) Tam giác ADO và tam giác ABC đồng dạng (g.g)

\( \Rightarrow \)\(\dfrac{{OA}}{{AC}} = \dfrac{{OD}}{{BC}} = \dfrac{{AD}}{{AB}} = \dfrac{{\dfrac{{a\sqrt 5 }}{2}}}{{2a}} = \dfrac{{\sqrt 5 }}{4}\)

\( \Rightarrow \)\(AC = \dfrac{{4OA}}{{\sqrt 5 }} = \dfrac{{4a}}{{\sqrt 5 }}\) ; \(BC = \dfrac{{4OD}}{{\sqrt 5 }} = \dfrac{{2a}}{{\sqrt 5 }}\)

b) Kéo dài DO một đoạn OE = a. Chứng minh bốn điểm A, C, B, E cùng nằm trên một đường tròn.

Ta có O là trung điểm của AB

\( \Rightarrow \) CO là trung tuyến ứng với cạnh huyền trong tam giác ABC vuông tại C

\( \Rightarrow \)OC = a

\( \Rightarrow \) OA = OB = OC = OE = a

\( \Rightarrow \)A, C, B, E cùng nằm trên đường tròn tâm O bán kính a.

c) Vẽ đường vuông góc với BC tại B cắt CE tại F. Tính BF.

Có OA = OE = a \( \Rightarrow \Delta \)OAE vuông cân tại O \( \Rightarrow \widehat {EAB} = {45^o}\)

Ta có A, C, B, E cùng nằm trên đường tròn tâm O (cmt)

\( \Rightarrow \)AEBC là tứ giác nội tiếp \( \Rightarrow \widehat {ECB} = \widehat {EAB} = {45^o}\) (góc nội tiếp cùng chắn cung EB)

Xét \(\Delta \)BCF vuông tại B có \(\widehat {FCB} = {45^o}\) \( \Rightarrow \)\(\Delta \) BCF vuông cân tại B

\( \Rightarrow \) BF = BC = \(\dfrac{{2a}}{{\sqrt 5 }}\)

d) Gọi P là giao điểm của AB và CE. Tính AP và BP.

Ta có AC // BF (cùng vuông góc với BC)

\( \Rightarrow \widehat {PBF} = \widehat {PAC}\)(so le trong) mà \(\widehat {APC} = \widehat {BPF} \) (đối đỉnh)

\( \Rightarrow \) Tam giác PAC đồng dạng với tam giác PBF (g.g)

\( \Rightarrow \)\(\dfrac{{AP}}{{BP}} = \dfrac{{AC}}{{BF}} = \dfrac{{4a}}{{\sqrt 5 }}:\dfrac{{2a}}{{\sqrt 5 }} = 2\)

\(\Rightarrow AP = 2BP\)

Mà AP + BP = AB = 2a

\( \Rightarrow \) 3BP = 2a \( \Rightarrow \) BP = \(\dfrac{{2a}}{3}\)\( \Rightarrow \) AP = \(\dfrac{{4a}}{3}\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved