1. Nội dung câu hỏi
Phương trình tiếp tuyến của đồ thị hàm số \(y = - 2{x^3} + 6{x^2} - 5\) tại điểm \(M(3; - 5)\) thuộc đồ thị là
A. \(y = 18x + 49\).
B. \(y = 18x - 49\)
C. \(y = - 18x - 49\).
D. \(y = - 18x + 49\).
2. Phương pháp giải
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\)
3. Lời giải chi tiết
Ta có \(y' = - 6{x^2} + 12x \Rightarrow y'\left( 3 \right) = - 18\)
Phương trình tiếp tuyến tại điểm \(M(3; - 5)\) thuộc đồ thị là:
\(y + 5 = - 18\left( {x - 3} \right)\) hay \(y = - 18x + 49\)
Đáp án D.
Chuyên đề 3: Dầu mỏ và chế biến dầu mỏ
Chương 8. Dẫn xuất halogen - ancol - phenol
Skills (Units 3 - 4)
Chương VII. Ô tô
CHƯƠNG I. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11