Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Cho hình chữ nhật \(ABCD\) có \(AB=12cm,\ BC=5cm\). Chứng minh rằng bốn điểm \(A,\ B,\ C,\ D\) thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.
Phương pháp giải - Xem chi tiết
+) Để chứng minh nhiều điểm cùng nằm trên một đường tròn, ta chứng minh các điểm này cùng cách đều một điểm.
+) Sử dụng tính chất của hình chữ nhật: \(ABCD\) là hình chữ nhật, hai đường chéo cắt nhau tại \(O\) thì ta có \(OA=OB=OC=OD=\dfrac{AC}{2}=\dfrac{BD}{2}\).
+) Định lí Pytago: \(\Delta{ABC}\) vuông tại \(C\) thì \(BC^2=AB^2+AC^2.\)
Lời giải chi tiết
Gọi \(O\) là giao điểm hai đường chéo của hình chữ nhật, ta có \(OA = OB = OC = OD \) (tính chất) nên bốn điểm này cùng thuộc đường tròn tâm \(O\), bán kính \(R=OA\).
Xét tam giác \(ABC\) vuông tại \(B\), áp dụng định lí Pytago, ta có:
\(AC^{2}=AB^{2}+BC^{2}=12^{2}+5^{2}=169\)
\(\Rightarrow AC=\sqrt{169}=13\,cm\)
\(\Rightarrow R=OA=\dfrac{13}{2}=6,5\,cm\)
Vậy bán kính của đường tròn là: \(R=6,5\,cm.\)
Đề thi học kì 2 - Sinh 9
Bài 16. Thực hành: Vẽ biểu đồ về sự thay đổi cơ cấu kinh tế
Bài 22
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 9
DI TRUYỀN VÀ BIẾN DỊ