Bài 1 trang 48

Giải bài 1 trang 48 SGK Toán 10 tập 1 – Cánh diều

Đề bài

Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) \({x^2} - 2x - 3 > 0\) khi và chỉ khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

b) \({x^2} - 2x - 3 < 0\) khi và chỉ khi \(x \in \left[ { - 1;3} \right]\)

Phương pháp giải - Xem chi tiết

- Tìm nghiệm của phương trình \(f\left( x \right) = 0\)

- Nếu \(\Delta ' > 0\) thì \(f\left( x \right)\) có 2 nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:

\(f\left( x \right)\) cùng dấu với hệ số a với mọi x thuộc các khoảng \(\left( { - \infty ;{x_1}} \right)\) và \(\left( {{x_2}; + \infty } \right)\);

\(f\left( x \right)\) trái dấu với hệ số a với mọi x thuộc các khoảng \(\left( {{x_1};{x_2}} \right)\)

Lời giải chi tiết

Phương trình \({x^2} - 2x - 3 = 0\) có 2 nghiệm phân biệt \({x_1} =  - 1,{x_2} = 3\)

Có \(a = 1 > 0\) nên

\(f\left( x \right) = {x^2} - 2x - 3 > 0\) khi và chỉ khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

=> Phát biểu a) đúng.

\(f\left( x \right) = {x^2} - 2x - 3 < 0\) khi và chỉ khi \(x \in \left( { - 1;3} \right)\)

=> Phát biểu b) sai vì khi x=-1 hoặc x=3 thì \({x^2} - 2x - 3 = 0\) (không nhỏ hơn 0).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved