Bài 1 trang 122 SGK Hình học 12 Nâng cao

Đề bài

Cho hình lăng trụ ABC.A’B’C’ với cạnh bên không vuông góc với mặt đáy. Gọi \(\left( \alpha  \right)\) là mặt phẳng vuông góc với các cạnh bên của hình lăng trụ và cắt chúng tại P, Q, R. Phép tịnh tiến theo vectơ \(\overrightarrow {AA'} \) biến tam giác PQR thành tam giác P’Q’R’.
a) Chứng minh rằng thể tích V của hình lăng trụ đã cho bằng thể tích của hình lăng trụ PQR.P’Q’R’.
b) Chứng minh rằng \(V = {S_{PQR}}.AA'\), trong đó \({S_{PQR}}\) là diện tích tam giác PQR.

Lời giải chi tiết

 

a) Mp(PQR) chia khối lăng trụ ABC.A’B’C’ thành 2 khối đa diện \({H_1}\) và \({H_2}\) với \({H_1}\) chứa \(\Delta ABC\), \({H_2}\) chứa \(\Delta A'B'C'\)

Mp(A’B’C’) chia khối lăng trụ PQR.P’Q’R’ thành hai khối đa diện \({H_2}\) và \({H_3}\) với \({H_3}\) chứa \(\Delta P'Q'R'.\)
Gọi \({V_1},{V_2},{V_3}\) lần lượt là thể tích của các khối đa diện \({H_1},{H_2},{H_3}\) ta có:
\({V_{ABC.A'B'C'}} = {V_1} + {V_2},\) \({V_{PQR.P'Q'R'}} = {V_2} + {V_3}.\)
Phép tịnh tiến \(\overrightarrow {AA'} :\)

\(\eqalign{
& {T_{\overrightarrow {AA'} }}:\Delta ABC \to \Delta A'B'C' \cr 
& {T_{\overrightarrow {AA'} }}:\Delta PQR \to \Delta P'Q'R' \cr} \)

Suy ra \({T_{\overrightarrow {AA'} }}:{H_1} \to {H_3}\) do đó \({V_1} = {V_3}.\)
Vậy \({V_{ABC.A'B'C'}} = {V_{PQR.P'Q'R'}}.\)
b) Vì lăng trụ PQR.P’Q’R’ là lăng trụ đứng nên có chiều cao PP’ = AA’ nên

\({V_{ABC.A'B'C'}} = {V_{PQR.P'Q'R'}} \) \(= {S_{PQR}}.AA'.\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved